GitHub - embedchain/embedchain: Framework to easily create LLM powered bots over any dataset.
Extracto
Framework to easily create LLM powered bots over any dataset. - GitHub - embedchain/embedchain: Framework to easily create LLM powered bots over any dataset.
Contenido
embedchain
Embedchain is a framework to easily create LLM powered bots over any dataset. If you want a javascript version, check out embedchain-js
🔧 Quick install
🔥 Latest
-
[2023/07/19] Released support for
🦙 llama2model. Start creating yourllama2based bots like this:import os from embedchain import Llama2App os.environ['REPLICATE_API_TOKEN'] = "REPLICATE API TOKEN" zuck_bot = Llama2App() # Embed your data zuck_bot.add("youtube_video", "https://www.youtube.com/watch?v=Ff4fRgnuFgQ") zuck_bot.add("web_page", "https://en.wikipedia.org/wiki/Mark_Zuckerberg") # Nice, your bot is ready now. Start asking questions to your bot. zuck_bot.query("Who is Mark Zuckerberg?") # Answer: Mark Zuckerberg is an American internet entrepreneur and business magnate. He is the co-founder and CEO of Facebook.
🔍 Demo
Try out embedchain in your browser:
📖 Documentation
The documentation for embedchain can be found at docs.embedchain.ai.
💻 Usage
Embedchain empowers you to create chatbot models similar to ChatGPT, using your own evolving dataset.
Queries
For example, you can use Embedchain to create an Elon Musk bot using the following code:
import os from embedchain import App # Create a bot instance os.environ["OPENAI_API_KEY"] = "YOUR API KEY" elon_bot = App() # Embed online resources elon_bot.add("web_page", "https://en.wikipedia.org/wiki/Elon_Musk") elon_bot.add("web_page", "https://tesla.com/elon-musk") elon_bot.add("youtube_video", "https://www.youtube.com/watch?v=MxZpaJK74Y4") # Query the bot elon_bot.query("How many companies does Elon Musk run?") # Answer: Elon Musk runs four companies: Tesla, SpaceX, Neuralink, and The Boring Company
🤝 Contributing
Contributions are welcome! Please check out the issues on the repository, and feel free to open a pull request. For more information, please see the contributing guidelines.
Citation
If you utilize this repository, please consider citing it with:
@misc{embedchain,
author = {Taranjeet Singh},
title = {Embechain: Framework to easily create LLM powered bots over any dataset},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/embedchain/embedchain}},
}
Fuente: GitHub