Absortio

Email → Summary → Bookmark → Email

Docsumo vs. Mistral OCR vs. Landing AI: A Head-to-Head Evaluation of OCR Capabilities

Extracto

In the past month, the AI community witnessed the launch of two much-anticipated OCR solutions—Mistral OCR by the Mistral team (known for their LLMs) and Agentic Document Extraction by Landing AI, Andrew Ng’s company. At Docsumo, we live and breathe Document AI. So when these releases hit the market, we couldn’t resist putting them to the test

Resumen

Resumen Principal

En el último mes, el sector de la IA fue testigo del lanzamiento de dos soluciones OCR muy esperadas: Mistral OCR del equipo Mistral y Agentic Document Extraction de Landing AI. Aunque inicialmente posicionadas como competidores en el procesamiento inteligente de documentos (IDP), un análisis más profundo revela que ambas se centran principalmente en la extracción de texto con preservación del diseño, abordando solo una fracción de las capacidades de una plataforma IDP completa. En contraste, Docsumo se posiciona como una solución IDP integral y de extremo a extremo, que va más allá del OCR básico. Una evaluación rigurosa de 120 documentos, calificada por revisores humanos, mostró una preferencia unánime por el OCR nativo de Docsumo, destacando las deficiencias críticas de Mistral OCR (como alucinaciones y la identificación de páginas como imágenes) y Landing AI (con problemas de resumen de texto e inexactitudes en la extracción). Esto subraya la necesidad de soluciones robustas para entornos de producción.

Elementos Clave

  • Introducción de Nuevas Soluciones OCR y su Alcance Limitado: El mercado de la IA ha recibido dos nuevas soluciones: Mistral OCR y Agentic Document Extraction de Landing AI. Ambas herramientas se enfocan principalmente en la extracción de texto mientras intentan conservar la estructura del documento, lo que representa una funcionalidad limitada en comparación con una plataforma de procesamiento inteligente de documentos (IDP) de extremo a extremo.
  • La Propuesta Integral de Docsumo como Plataforma IDP: Docsumo se distingue por ofrecer un sistema IDP completo que abarca la ingesta de documentos, extracción de texto sensible al diseño, clasificación inteligente, extracción de información estructurada mediante esquemas (pares clave-valor, partidas, lógica de preguntas y respuestas), un sistema de revisión humana en bucle, auto-clasificación, análisis de documentos, y extensas integraciones con plataformas empresariales como Salesforce y SAP, exportando datos en formatos JSON, CSV y Excel.
  • Resultados de Evaluación Crítica en Calidad de Extracción de Texto: Una evaluación de 120 documentos (facturas, formularios, extractos bancarios, pasaportes) por tres revisores humanos reveló una clara superioridad del OCR nativo de Docsumo, siendo preferido en 116 muestras. Landing AI fue preferido en 4 muestras y Mistral OCR en 0, lo que demuestra la robustez y precisión de Docsumo en comparación con las nuevas ofertas.
  • Deficiencias Específicas de Mistral OCR y Landing AI: Mistral OCR mostró limitaciones significativas, como la identificación de secciones enteras como imágenes (sin extracción de datos), alucinaciones en escaneos de baja resolución, y pobre reconocimiento de tablas y fuentes pequeñas. Landing AI, por su parte, tendió a resumir o parafrasear el texto en lugar de extraerlo fielmente, tuvo problemas con el texto vertical (ej. "89000458" leído como "80000456") e hizo un etiquetado de campos impreciso, lo que puede llevar a errores críticos.

Análisis e Implicaciones

La clara disparidad en el rendimiento resalta que, si bien las

Contenido

In the past month, the AI community witnessed the launch of two much-anticipated OCR solutions—Mistral OCR by the Mistral team (known for their LLMs) and Agentic Document Extraction by Landing AI, Andrew Ng’s company. At Docsumo, we live and breathe Document AI. So when these releases hit the market, we couldn’t resist putting them to the test

At first glance, these tools appear to be direct competitors in the Intelligent Document Processing (IDP) space. But upon deeper analysis, it's clear they only address a narrow slice of what a full-fledged Document AI platform like Docsumo offers.

Both Mistral OCR and Landing AI focus primarily on layout-preserving OCR. While they position themselves as groundbreaking solutions in document understanding, their functionality is essentially limited to extracting text while attempting to retain document structure.

The Key Difference: Docsumo Is Built for End-to-End Document AI

Docsumo’s platform is more than just OCR. It is an end-to-end IDP system built to handle document ingestion, layout-aware text extraction, intelligent classification, and schema-driven information extraction.

Here’s how our native OCR stands apart:

  • Proprietary OCR engine with spatial awareness and layout preservation.
  • Advanced preprocessing including noise removal, image enhancement, and deskewing
  • Structured information extraction using schemas with key-value pairs, line items, and Q&A logic
  • Two-way human-in-the-loop review system for validation and corrections
  • Auto-classification, document analytics, metadata extraction
  • Seamless export options in JSON, CSV, Excel formats
  • Integrations with tools like Salesforce, Google Drive, QuickBooks, SAP, and more in formats such as JSON, CSV, and Excel. (See all integrations here: Docsumo Integrations)

Evaluation Criteria

To fairly assess the capabilities of these three systems, we tested them on:

  1. Text extraction quality: Layout preservation, accuracy, completeness
  2. Information extraction: Accuracy of structured data extraction from OCR outputs using GPT-4o
  3. Performance metrics: Speed (latency) and cost per document

All evaluation results are publicly available at:
👉 https://huggingface.co/spaces/docsumo/ocr-results

1. Text Extraction Quality

We evaluated 120 document samples across invoices, forms, bank statements, and passports. Three human reviewers independently rated the outputs from all three systems.

📊 Unanimous Results:

OCR System Preference Count (out of 120)
Docsumo Native OCR 116
Landing AI Agentic Extraction 4
Mistral OCR 0

🔍 Limitations of Mistral OCR

Mistral OCR struggled significantly across a wide range of document types:

1. Pages misidentified as images

  • Entire sections were returned as image placeholders like ![img-0.jpeg](img-0.jpeg)
  • For example, in the below bank statement, a full table was treated as an image, with no data extracted at all.

Document ingested in Mistral OCR

Mistral OCR's output and its limitations

Docsumo's Output

2. Frequent hallucinations: In unclear or low-resolution scans, it often generated random, unrelated text.

Document Ingested in Mistral

Mistral OCR's output with key fields misidentified or extracted improperly

  • Poor table recognition: Tables were treated as images or misparsed, failing to extract even basic cell content.
  • Small fonts ignored: Text stamps and fine-print content were regularly missed or replaced with gibberish.
  • Inconsistent results: Even with moderately clean documents, it often missed key data blocks or misinterpreted layout structures.

In short: while fast and cheap, Mistral OCR lacks the robustness required for production-grade document workflows.

⚠️ Issues with Landing AI's Agentic Document Extraction

Although better than Mistral, Landing AI also revealed multiple critical flaws:

1. Text summarization instead of extraction

  • Instead of pulling exact content, the model paraphrased or over-described elements.
  • Example: A logo containing just the text "ABC" was transformed into a verbose 130-word description.

2. Failure with vertical text

  • The model consistently struggled with vertically aligned numbers.
  • In the below case, the text "89000458" was misread as "80000456."

Document ingested in Landing AI

Output received from Landing AI

Docsumo's Output

3. Inaccurate field labeling

  • Labels were assigned even when contextually incorrect.
  • For example, a watermark number at the top of a table was mistakenly labeled as an invoice number—potentially leading to major downstream errors.

Document Ingested in Landing AI

Output received by Landing AI

Docsumo's Output

4. Misclassification of tables:

  • Tables with fewer than two rows were not recognized as tables and were broken down into key-value pairs.
  • Invoices with minimal line items suffered most from this issue.

These limitations reinforce why generative OCR models like Mistral and Landing AI may not yet be suited for production environments where precision, consistency, and fidelity to the original document are critical.

By contrast, Docsumo's native OCR preserves every word, layout, and structure—exactly as it appears in the source document—while enhancing it for downstream processing.

2. Structured Information Extraction

To objectively measure performance in an IDP context, we evaluated how each OCR system’s output performed when used for automated key-value extraction with GPT-4o.

Workflow:

This method revealed the ripple effect of poor OCR output on downstream tasks. Once again, Docsumo’s native OCR yielded the highest extraction accuracy, reinforcing its suitability for enterprise-grade workflows.

3. Speed Comparison

Model Latency / Page
Mistral OCR <2 seconds
Mistral OCR (Batch) -
Landing AI ~1 min (sometimes 2+ mins)
Docsumo Native OCR <10 seconds

While Mistral OCR is affordable and quick, its low accuracy renders it unsuitable for anything beyond trivial use cases. Landing AI is significantly slower and frequently experiences timeouts, further reducing reliability.

Docsumo, by contrast, provides a balanced solution—fast, scalable, and consistently accurate.

Final Thoughts

The results are clear: Docsumo’s native OCR outperforms Mistral and Landing AI across all key benchmarks—layout preservation, information extraction accuracy, processing speed, and usability.

And we’re not just saying that—we’re showing it:
👉 Explore the results live on Hugging Face

If you're looking for a document AI system that’s production-ready, scalable, and accurate, Docsumo is built for you.

P.S. We’ll continue expanding this benchmark report with comparisons against other industry competitors to transparently showcase where Docsumo performs better—and where the gaps truly lie in the document AI landscape.

Suggested Case Study

Automating Portfolio Management for Westland Real Estate Group

The portfolio includes 14,000 units across all divisions across Los Angeles County, Orange County, and Inland Empire.

Thank you! You will shortly receive an email

Oops! Something went wrong while submitting the form.