GitHub - Mnehmos/Advanced-Multi-Agent-AI-Framework
Extracto
Contribute to Mnehmos/Advanced-Multi-Agent-AI-Framework development by creating an account on GitHub.
Resumen
Resumen Principal
El Advanced Multi-Agent AI Framework representa una solución integral y de nivel empresarial diseñada para transformar el flujo de trabajo en el desarrollo de IA. Este marco innovador se distingue por su capacidad para coordinar equipos de agentes de IA especializados mediante una arquitectura robusta que integra más de 80 técnicas avanzadas de ingeniería de prompts. Su objetivo es optimizar la gestión de proyectos, desde la planificación hasta la implementación y el mantenimiento, asegurando resultados superiores y consistentes. Utilizando la metodología SPARC para una coordinación estructurada del ciclo de vida y el patrón Boomerang para una delegación de tareas eficiente, el sistema distribuye responsabilidades entre agentes con roles definidos como el Orchestrator, Architect, Builder y Debug. La eficiencia de recursos con operaciones "escalpel, not hammer" y su diseño de arquitectura preparado para producción, con documentación y trazabilidad, lo posicionan como una herramienta esencial para el desarrollo ágil y de alta calidad en entornos complejos.
Elementos Clave
-
Coordinación Multi-Agente con SPARC y Boomerang: El corazón del marco reside en su sofisticado sistema de coordinación. Adopta la metodología SPARC (Specification → Pseudocode → Architecture → Refinement → Completion) para estructurar el proceso de desarrollo de IA de forma sistemática. Complementariamente, el patrón Boomerang Task Delegation permite al agente Orchestrator generar tareas a partir de requisitos del proyecto y asignarlas de manera inteligente al especialista de IA más adecuado, garantizando una delegación fiable y eficiente.
-
Arquitectura de Agentes Especializados: El framework organiza a los agentes de IA en equipos con funciones específicas, emulando la estructura de un equipo humano profesional. Esto incluye una capa de Coordinación Central (Orchestrator, Architect, Planner), un Equipo de Implementación (Builder, Code, Guardian), un Equipo de Investigación y Análisis (Ask, Deep Research, Deep Scope) y **Especialistas de
Contenido
Advanced Multi-Agent AI Framework - Professional Team Coordination with 80+ Prompt Engineering Techniques
Transform your AI development workflow with a production-ready multi-agent framework combining advanced prompt engineering, structured coordination, and professional team management.
🔗 Quick Links: Kilo Code Platform | Master Prompt Engineering Techniques
🙏 Support This Work
If this project helps you build better AI systems and you'd like to show your appreciation:
- Buy Me a Coffee: https://buymeacoffee.com/mnehmos
🎯 What This Framework Delivers
Professional AI Team Management - Deploy specialized AI agents with enterprise-grade coordination, advanced prompt engineering, and systematic workflow automation for superior development outcomes.
Key Benefits
- ⚡ 80+ Advanced Prompt Engineering Techniques - Integrated cutting-edge methods for superior AI performance
- 🔄 Multi-Agent Coordination - SPARC framework with agentic boomerang pattern for reliable task delegation
- 📈 Performance Optimization - Token-efficient operations with "scalpel, not hammer" resource management
- 🏗️ Production-Ready Architecture - Structured documentation, traceability, and enterprise workflow patterns
- 🛠️ Framework Extensibility - Customizable modes and prompt engineering technique integration
🚀 Quick Start Guide
Prerequisites
- Kilo Code AI Platform (recommended) or compatible AI assistant with custom modes
- Basic understanding of multi-agent AI systems
- Project requiring systematic AI team coordination
Installation & Setup
1. Clone the Framework
git clone https://github.com/Mnehmos/Advanced-Multi-Agent-AI-Framework.git
cd Advanced-Multi-Agent-AI-Framework2. Configure AI Team Modes
# Copy configuration templates
cp templates/custom_modes.yaml ./
cp templates/custom-instructions-for-all-modes.md ./
cp templates/enhance-prompt-template.md ./3. Deploy to Kilo Code
- Open Kilo Code → "Modes" → "Edit Project Modes" or "Global Modes"
- copy
custom_modes.yamlconfiguration from template and paste into kilocode settings - Configure custom instructions for all modes by copy and pasting into the Teams settings "Custom Instructions for all Modes"
- Do the same for enhance prompt template into the prompts tab of the srttings window.
- Save and activate framework
4. Start Orchestrating
- Switch to Orchestrator Mode
- Describe your project requirements
- Generate Task Map using enhance prompt (✨ button)
- Let the AI team execute with full coordination
🏛️ Framework Architecture
Core Coordination Layer
| Mode | Specialization | Advanced Techniques |
|---|---|---|
| 🔄 Orchestrator | Project Management & Task Delegation | workflow-template-prompting, boomerang-task-delegation |
| 🏗️ Architect | System Design & Architecture | visual-documentation-generation, tree-of-thoughts |
| 📅 Planner | Product Planning & Requirements | user-story-prompting, stakeholder-perspective-analysis |
Implementation Team
| Mode | Specialization | Advanced Techniques |
|---|---|---|
| ⚒️ Builder | Software Development & Testing | code-generation-agents, test-based-iterative-flow |
| 💻 Code | Advanced Coding & Optimization | 'modular-code-generation, (https://github.com/chonghin33/lcm-1.13-whitepaper)' 'language-construct-modeling` |
| 🔒 Guardian | Infrastructure & CI/CD | automated-development-workflows, semantic-guardrails |
Research & Analysis Team
| Mode | Specialization | Advanced Techniques |
|---|---|---|
| ❓ Ask | Information Discovery | rag, iterative-retrieval-augmentation |
| 🔎 Deep Research | Comprehensive Analysis | multi-perspective-analysis, systematic-literature-review |
| 🔬 Deep Scope | Issue Analysis & Scoping | codebase-impact-mapping, hypothetical-scenario-modeling |
Support Specialists
| Mode | Specialization | Advanced Techniques |
|---|---|---|
| 🐛 Debug | Technical Diagnostics | five-whys-prompting, chain-of-verification |
| 📁 Memory | Knowledge Management | semantic-clustering, knowledge-graph-construction |
🎯 Use Cases & Applications
Enterprise Software Development
- Complex application architecture planning
- Multi-team coordination and workflow automation
- Advanced code generation with quality assurance
- Systematic debugging and performance optimization
AI Research Projects
- Literature review and competitive analysis
- Hypothesis formation and testing workflows
- Knowledge management and documentation systems
- Multi-perspective research synthesis
Product Development
- User story creation and requirement analysis
- Feature planning with stakeholder perspective analysis
- Technical implementation with architectural guidance
- Quality assurance and testing automation
Infrastructure Management
- CI/CD pipeline design and automation
- Security implementation and monitoring
- Performance optimization and scaling
- Documentation and knowledge preservation
🔄 The SPARC + Boomerang Methodology
SPARC Framework Integration
Specification → Pseudocode → Architecture → Refinement → Completion
Boomerang Task Delegation
- Task Creation - Orchestrator generates structured tasks from project requirements
- Specialist Assignment - Tasks delegated to most appropriate AI agent
- Advanced Execution - Specialists apply 80+ prompt engineering techniques
- Quality Integration - Results validated and integrated into project workflow
- Iterative Improvement - Continuous optimization through feedback loops
📊 Performance & Optimization Features
Token Efficiency
- Context window utilization kept below 40%
- Cognitive primitive optimization (start small, scale up)
- Specialized mode selection for minimal resource usage
- "Scalpel, not Hammer" resource management philosophy
Quality Assurance
- Structured task validation and success criteria
- Cross-mode verification and error checking
- Comprehensive documentation and traceability
- Automated workflow optimization
Scalability
- Modular architecture supporting team expansion
- Customizable prompt engineering technique integration
- Enterprise workflow pattern implementation
- Professional project management capabilities
📚 Advanced Documentation
Framework Configuration
Team Member Profiles
Detailed documentation for each AI specialist:
Task Management
# Project: Advanced AI System Development ## Phase 1: Architecture Planning - [ ] **Task 1.1**: System design and architecture planning - **Agent**: Architect - **Dependencies**: None - **Outputs**: [architecture_diagram.md, technical_specifications.md] - **Validation**: Architecture review completed with stakeholder approval - **Human Checkpoint**: YES - **Scope**: Complete system architecture design using visual-documentation-generation and tree-of-thoughts techniques
🛡️ Enterprise Features
Security & Compliance
- Structured documentation for audit trails
- Role-based task assignment and validation
- Quality gates and automated verification
- Professional workflow management
Integration Capabilities
- GitHub integration for issue and PR management
- CI/CD pipeline automation
- Knowledge management system integration
- Custom prompt engineering technique deployment
Support & Maintenance
- Comprehensive error handling and debugging
- Performance monitoring and optimization
- Documentation generation and maintenance
- Continuous improvement through feedback integration
🤝 Community & Support
Get Help
- Documentation: Complete framework guides and tutorials
- Issues: Report bugs or request features via GitHub Issues
- Discussions: Join community discussions for best practices
- Professional Support: Contact for enterprise implementation assistance
Support the Project
- ⭐ Star this repository to help others discover the framework
- 🤝 Contribute improvements and new prompt engineering techniques
- ☕ Buy Me a Coffee: Support Development
- 🔬 Advanced Research: Explore Vario Research for custom AI analysis
📈 Roadmap & Future Development
Upcoming Features
- Additional prompt engineering technique integration
- Enhanced multi-modal AI support
- Extended enterprise workflow patterns
- Advanced performance analytics and monitoring
Research Integration
- Latest prompt engineering research incorporation
- Multi-agent coordination optimization
- Framework scalability improvements
- Advanced AI reasoning technique integration
📄 License & Attribution
MIT License - Open source framework for professional and commercial use.
Acknowledgments
- SPARC Framework development community
- Multi-agent AI research contributors
- Kilo Code platform development team
- Advanced prompt engineering research community
- Framework users providing feedback and improvements
- Vincent Shing Hin Chong for their work into Language Construct Modeling | https://osf.io/q6cyp/
- 20+ research papers sources listed here: https://mnehmos.github.io/Prompt-Engineering/sources.html
🎯 Ready to Transform Your AI Development?
Deploy this professional multi-agent AI framework today and experience:
- ⚡ Faster Development with coordinated AI specialists
- 🎯 Higher Quality through advanced prompt engineering
- 📈 Better Outcomes with systematic workflow management
- 🏗️ Scalable Architecture for growing project needs
This framework represents the cutting edge of multi-agent AI coordination, integrating 80+ advanced prompt engineering techniques with proven enterprise workflow patterns for superior development outcomes.
Fuente: GitHub