Absortio

Email → Summary → Bookmark → Email

GitHub - Mnehmos/Advanced-Multi-Agent-AI-Framework

Extracto

Contribute to Mnehmos/Advanced-Multi-Agent-AI-Framework development by creating an account on GitHub.

Resumen

Resumen Principal

El Advanced Multi-Agent AI Framework representa una solución integral y de nivel empresarial diseñada para transformar el flujo de trabajo en el desarrollo de IA. Este marco innovador se distingue por su capacidad para coordinar equipos de agentes de IA especializados mediante una arquitectura robusta que integra más de 80 técnicas avanzadas de ingeniería de prompts. Su objetivo es optimizar la gestión de proyectos, desde la planificación hasta la implementación y el mantenimiento, asegurando resultados superiores y consistentes. Utilizando la metodología SPARC para una coordinación estructurada del ciclo de vida y el patrón Boomerang para una delegación de tareas eficiente, el sistema distribuye responsabilidades entre agentes con roles definidos como el Orchestrator, Architect, Builder y Debug. La eficiencia de recursos con operaciones "escalpel, not hammer" y su diseño de arquitectura preparado para producción, con documentación y trazabilidad, lo posicionan como una herramienta esencial para el desarrollo ágil y de alta calidad en entornos complejos.

Elementos Clave

  • Coordinación Multi-Agente con SPARC y Boomerang: El corazón del marco reside en su sofisticado sistema de coordinación. Adopta la metodología SPARC (Specification → Pseudocode → Architecture → Refinement → Completion) para estructurar el proceso de desarrollo de IA de forma sistemática. Complementariamente, el patrón Boomerang Task Delegation permite al agente Orchestrator generar tareas a partir de requisitos del proyecto y asignarlas de manera inteligente al especialista de IA más adecuado, garantizando una delegación fiable y eficiente.

  • Arquitectura de Agentes Especializados: El framework organiza a los agentes de IA en equipos con funciones específicas, emulando la estructura de un equipo humano profesional. Esto incluye una capa de Coordinación Central (Orchestrator, Architect, Planner), un Equipo de Implementación (Builder, Code, Guardian), un Equipo de Investigación y Análisis (Ask, Deep Research, Deep Scope) y **Especialistas de

Contenido

Advanced Multi-Agent AI Framework - Professional Team Coordination with 80+ Prompt Engineering Techniques

Transform your AI development workflow with a production-ready multi-agent framework combining advanced prompt engineering, structured coordination, and professional team management.

🔗 Quick Links: Kilo Code Platform | Master Prompt Engineering Techniques

🙏 Support This Work

If this project helps you build better AI systems and you'd like to show your appreciation:

🎯 What This Framework Delivers

Professional AI Team Management - Deploy specialized AI agents with enterprise-grade coordination, advanced prompt engineering, and systematic workflow automation for superior development outcomes.

Key Benefits

  • ⚡ 80+ Advanced Prompt Engineering Techniques - Integrated cutting-edge methods for superior AI performance
  • 🔄 Multi-Agent Coordination - SPARC framework with agentic boomerang pattern for reliable task delegation
  • 📈 Performance Optimization - Token-efficient operations with "scalpel, not hammer" resource management
  • 🏗️ Production-Ready Architecture - Structured documentation, traceability, and enterprise workflow patterns
  • 🛠️ Framework Extensibility - Customizable modes and prompt engineering technique integration

🚀 Quick Start Guide

Prerequisites

  • Kilo Code AI Platform (recommended) or compatible AI assistant with custom modes
  • Basic understanding of multi-agent AI systems
  • Project requiring systematic AI team coordination

Installation & Setup

1. Clone the Framework

git clone https://github.com/Mnehmos/Advanced-Multi-Agent-AI-Framework.git
cd Advanced-Multi-Agent-AI-Framework

2. Configure AI Team Modes

# Copy configuration templates
cp templates/custom_modes.yaml ./
cp templates/custom-instructions-for-all-modes.md ./
cp templates/enhance-prompt-template.md ./

3. Deploy to Kilo Code

  • Open Kilo Code → "Modes" → "Edit Project Modes" or "Global Modes"
  • copy custom_modes.yaml configuration from template and paste into kilocode settings
  • Configure custom instructions for all modes by copy and pasting into the Teams settings "Custom Instructions for all Modes"
  • Do the same for enhance prompt template into the prompts tab of the srttings window.
  • Save and activate framework

4. Start Orchestrating

  • Switch to Orchestrator Mode
  • Describe your project requirements
  • Generate Task Map using enhance prompt (✨ button)
  • Let the AI team execute with full coordination

🏛️ Framework Architecture

Core Coordination Layer

Mode Specialization Advanced Techniques
🔄 Orchestrator Project Management & Task Delegation workflow-template-prompting, boomerang-task-delegation
🏗️ Architect System Design & Architecture visual-documentation-generation, tree-of-thoughts
📅 Planner Product Planning & Requirements user-story-prompting, stakeholder-perspective-analysis

Implementation Team

Mode Specialization Advanced Techniques
⚒️ Builder Software Development & Testing code-generation-agents, test-based-iterative-flow
💻 Code Advanced Coding & Optimization 'modular-code-generation, (https://github.com/chonghin33/lcm-1.13-whitepaper)' 'language-construct-modeling`
🔒 Guardian Infrastructure & CI/CD automated-development-workflows, semantic-guardrails

Research & Analysis Team

Mode Specialization Advanced Techniques
❓ Ask Information Discovery rag, iterative-retrieval-augmentation
🔎 Deep Research Comprehensive Analysis multi-perspective-analysis, systematic-literature-review
🔬 Deep Scope Issue Analysis & Scoping codebase-impact-mapping, hypothetical-scenario-modeling

Support Specialists

Mode Specialization Advanced Techniques
🐛 Debug Technical Diagnostics five-whys-prompting, chain-of-verification
📁 Memory Knowledge Management semantic-clustering, knowledge-graph-construction

🎯 Use Cases & Applications

Enterprise Software Development

  • Complex application architecture planning
  • Multi-team coordination and workflow automation
  • Advanced code generation with quality assurance
  • Systematic debugging and performance optimization

AI Research Projects

  • Literature review and competitive analysis
  • Hypothesis formation and testing workflows
  • Knowledge management and documentation systems
  • Multi-perspective research synthesis

Product Development

  • User story creation and requirement analysis
  • Feature planning with stakeholder perspective analysis
  • Technical implementation with architectural guidance
  • Quality assurance and testing automation

Infrastructure Management

  • CI/CD pipeline design and automation
  • Security implementation and monitoring
  • Performance optimization and scaling
  • Documentation and knowledge preservation

🔄 The SPARC + Boomerang Methodology

SPARC Framework Integration

Specification → Pseudocode → Architecture → Refinement → Completion

Boomerang Task Delegation

  1. Task Creation - Orchestrator generates structured tasks from project requirements
  2. Specialist Assignment - Tasks delegated to most appropriate AI agent
  3. Advanced Execution - Specialists apply 80+ prompt engineering techniques
  4. Quality Integration - Results validated and integrated into project workflow
  5. Iterative Improvement - Continuous optimization through feedback loops

📊 Performance & Optimization Features

Token Efficiency

  • Context window utilization kept below 40%
  • Cognitive primitive optimization (start small, scale up)
  • Specialized mode selection for minimal resource usage
  • "Scalpel, not Hammer" resource management philosophy

Quality Assurance

  • Structured task validation and success criteria
  • Cross-mode verification and error checking
  • Comprehensive documentation and traceability
  • Automated workflow optimization

Scalability

  • Modular architecture supporting team expansion
  • Customizable prompt engineering technique integration
  • Enterprise workflow pattern implementation
  • Professional project management capabilities

📚 Advanced Documentation

Framework Configuration

Team Member Profiles

Detailed documentation for each AI specialist:

Task Management

# Project: Advanced AI System Development

## Phase 1: Architecture Planning
- [ ] **Task 1.1**: System design and architecture planning
  - **Agent**: Architect
  - **Dependencies**: None
  - **Outputs**: [architecture_diagram.md, technical_specifications.md]
  - **Validation**: Architecture review completed with stakeholder approval
  - **Human Checkpoint**: YES
  - **Scope**: Complete system architecture design using visual-documentation-generation and tree-of-thoughts techniques

🛡️ Enterprise Features

Security & Compliance

  • Structured documentation for audit trails
  • Role-based task assignment and validation
  • Quality gates and automated verification
  • Professional workflow management

Integration Capabilities

  • GitHub integration for issue and PR management
  • CI/CD pipeline automation
  • Knowledge management system integration
  • Custom prompt engineering technique deployment

Support & Maintenance

  • Comprehensive error handling and debugging
  • Performance monitoring and optimization
  • Documentation generation and maintenance
  • Continuous improvement through feedback integration

🤝 Community & Support

Get Help

  • Documentation: Complete framework guides and tutorials
  • Issues: Report bugs or request features via GitHub Issues
  • Discussions: Join community discussions for best practices
  • Professional Support: Contact for enterprise implementation assistance

Support the Project

  • Star this repository to help others discover the framework
  • 🤝 Contribute improvements and new prompt engineering techniques
  • Buy Me a Coffee: Support Development
  • 🔬 Advanced Research: Explore Vario Research for custom AI analysis

📈 Roadmap & Future Development

Upcoming Features

  • Additional prompt engineering technique integration
  • Enhanced multi-modal AI support
  • Extended enterprise workflow patterns
  • Advanced performance analytics and monitoring

Research Integration

  • Latest prompt engineering research incorporation
  • Multi-agent coordination optimization
  • Framework scalability improvements
  • Advanced AI reasoning technique integration

📄 License & Attribution

MIT License - Open source framework for professional and commercial use.

Acknowledgments

  • SPARC Framework development community
  • Multi-agent AI research contributors
  • Kilo Code platform development team
  • Advanced prompt engineering research community
  • Framework users providing feedback and improvements
  • Vincent Shing Hin Chong for their work into Language Construct Modeling | https://osf.io/q6cyp/
  • 20+ research papers sources listed here: https://mnehmos.github.io/Prompt-Engineering/sources.html

🎯 Ready to Transform Your AI Development?

Deploy this professional multi-agent AI framework today and experience:

  • Faster Development with coordinated AI specialists
  • 🎯 Higher Quality through advanced prompt engineering
  • 📈 Better Outcomes with systematic workflow management
  • 🏗️ Scalable Architecture for growing project needs

This framework represents the cutting edge of multi-agent AI coordination, integrating 80+ advanced prompt engineering techniques with proven enterprise workflow patterns for superior development outcomes.

🚀 Get Started Now | 📚 View Documentation | 👥 Meet the Team

Fuente: GitHub