GitHub - calebevans/cordon: Reduce logs to their semantic anomalies
Extracto
Reduce logs to their semantic anomalies. Contribute to calebevans/cordon development by creating an account on GitHub.
Resumen
Resumen Principal
Cordon se presenta como una solución vanguardista para el análisis de logs de sistema, especializada en la detección de anomalías semánticas. Su método rompe con los enfoques tradicionales basados en palabras clave, utilizando transformer embeddings y puntuación de densidad k-NN para interpretar el significado subyacente del contenido de
Contenido
Cordon
Semantic anomaly detection for system log files
Cordon uses transformer embeddings and k-NN density scoring to identify semantically unusual patterns in large log files, reducing massive logs to the most anomalous sections for analysis.
Key principle: Repetitive patterns (even errors) are considered "normal background." Cordon surfaces unusual, rare, or clustered events that stand out semantically from the bulk of the logs.
📖 For an in-depth explanation of the methodology, see my Red Hat Developer article: Semantic anomaly detection in log files with Cordon.
Features
- Semantic Analysis: Uses transformer models to understand log content meaning, not just keyword matching
- k-NN Density Scoring: Identifies anomalies using k-NN distance in embedding space
- Noise Reduction: Filters out repetitive logs, keeping only unusual patterns
- Multiple Backends: sentence-transformers (default), llama.cpp for containers, or remote APIs (OpenAI, Gemini, etc.)
Requirements
GPU Requirements (Optional but Recommended)
For GPU acceleration, you need:
- NVIDIA GPU: Pascal architecture or newer (GTX 10-series, RTX series, Tesla P/V/A/H series)
- Compute Capability: 6.0 or higher
- Compatible GPUs: GTX 1050+, RTX 20/30/40 series, Tesla P100+, V100, A100, H100
Not compatible: GTX 900-series or older (Maxwell/Kepler architectures)
CPU mode is always available as a fallback.
Installation
From PyPI (Recommended)
# With uv (recommended) uv pip install cordon # With pip pip install cordon
From Source
# Clone the repository git clone https://github.com/calebevans/cordon.git cd cordon # With uv (recommended) uv pip install -e . # With pip pip install -e .
For development:
uv pip install -e ".[dev]"
pre-commit installFor llama.cpp backend (GPU acceleration in containers):
uv pip install -e ".[llama-cpp]"Container Installation
See Container Guide for GPU support and advanced usage.
Quick Start
Command Line
# Basic usage cordon system.log # Multiple files cordon app.log error.log # With options cordon --window-size 10 --k-neighbors 10 --anomaly-percentile 0.05 app.log # Filter to a percentile range (exclude top 5%, keep next 10%) cordon --anomaly-range 0.05 0.15 app.log # With GPU acceleration (scoring batch size auto-detected) cordon --device cuda --batch-size 64 large.log # Override auto-detection if needed cordon --device cuda --batch-size 64 --scoring-batch-size 50000 large.log # Save results to file cordon --output anomalies.xml system.log # Show detailed statistics and save results cordon --detailed --output results.xml app.log # llama.cpp backend (for containers) cordon --backend llama-cpp system.log
Note: On first run, Cordon downloads the embedding model. Subsequent runs use the cached model.
Python Library
from pathlib import Path from cordon import SemanticLogAnalyzer, AnalysisConfig # Basic usage analyzer = SemanticLogAnalyzer() output = analyzer.analyze_file(Path("system.log")) print(output) # Advanced configuration with GPU acceleration config = AnalysisConfig( window_size=10, k_neighbors=10, anomaly_percentile=0.05, device="cuda", # GPU for embedding and scoring batch_size=64, # Embedding batch size scoring_batch_size=None # Auto-detect optimal batch size (default) ) analyzer = SemanticLogAnalyzer(config) result = analyzer.analyze_file_detailed(Path("app.log")) # Using anomaly range mode (exclude top 5%, keep next 10%) config = AnalysisConfig( window_size=10, k_neighbors=10, anomaly_range_min=0.05, # Exclude top 5% (most extreme anomalies) anomaly_range_max=0.15, # Include up to 15% (keep next 10%) device="cuda", ) analyzer = SemanticLogAnalyzer(config) result = analyzer.analyze_file_detailed(Path("app.log")) # Using remote API backend import os config = AnalysisConfig( backend="remote", model_name="openai/text-embedding-3-small", api_key=os.getenv("OPENAI_API_KEY"), batch_size=100, ) analyzer = SemanticLogAnalyzer(config) result = analyzer.analyze_file_detailed(Path("app.log"))
Example Output
Running cordon examples/apache_sample.log produces output like this (showing one representative block from the full output):
================================================================================
Analyzing: examples/apache_sample.log
Total lines: 2,004
================================================================================
<block lines="581-600" score="0.1746">
[Sun Dec 04 07:18:00 2005] [error] mod_jk child workerEnv in error state 6
[Sun Dec 04 07:18:00 2005] [notice] workerEnv.init() ok /etc/httpd/conf/workers2.properties
[Sun Dec 04 07:18:00 2005] [error] mod_jk child workerEnv in error state 7
[Sun Dec 04 07:45:45 2005] [error] [client 63.13.186.196] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 08:54:17 2005] [error] [client 147.31.138.75] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 09:35:12 2005] [error] [client 207.203.80.15] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 10:53:30 2005] [error] [client 218.76.139.20] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 11:11:07 2005] [error] [client 24.147.151.74] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 11:33:18 2005] [error] [client 211.141.93.88] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 11:42:43 2005] [error] [client 216.127.124.16] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 12:33:13 2005] [error] [client 208.51.151.210] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 13:32:32 2005] [error] [client 65.68.235.27] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 14:29:00 2005] [error] [client 4.245.93.87] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 15:18:36 2005] [error] [client 67.154.58.130] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 15:59:01 2005] [error] [client 24.83.37.136] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 16:24:03 2005] [notice] jk2_init() Found child 1219 in scoreboard slot 6
[Sun Dec 04 16:24:05 2005] [error] [client 58.225.62.140] Directory index forbidden by rule: /var/www/html/
[Sun Dec 04 16:24:06 2005] [notice] workerEnv.init() ok /etc/httpd/conf/workers2.properties
[Sun Dec 04 16:24:06 2005] [error] mod_jk child workerEnv in error state 6
[Sun Dec 04 16:31:07 2005] [notice] jk2_init() Found child 1248 in scoreboard slot 7
</block>
... additional anomalous blocks ...
The tool identified this block as semantically unusual (score: 0.1746) because it contains a cluster of client-specific directory access errors from various IPs—a different pattern from the repetitive worker initialization messages that dominate the rest of the log file. The full output contains multiple such blocks, representing the most anomalous windows based on the configured threshold (default: top 10%).
Backend Options
sentence-transformers (Default)
Best for native installations with GPU access.
cordon system.log # Auto-detects GPU (MPS/CUDA)
cordon --device cuda system.log
cordon --device cpu system.logllama.cpp Backend
Best for container deployments with GPU acceleration via Vulkan.
# Auto-downloads model on first run cordon --backend llama-cpp system.log # With GPU acceleration cordon --backend llama-cpp --n-gpu-layers 10 system.log # Custom model cordon --backend llama-cpp --model-path ./model.gguf system.log
See llama.cpp Guide for details on models, performance, and GPU setup.
Remote API Backend
Use remote embedding APIs from OpenAI, Gemini, Cohere, and more via LiteLLM.
# OpenAI (uses OPENAI_API_KEY env var, or pass --api-key) cordon --backend remote \ --model-name openai/text-embedding-3-small \ system.log # Gemini (uses GEMINI_API_KEY env var) cordon --backend remote \ --model-name gemini/text-embedding-004 \ system.log # Cohere (uses COHERE_API_KEY env var) cordon --backend remote \ --model-name cohere/embed-english-v3.0 \ system.log # Or explicitly pass API key cordon --backend remote \ --model-name openai/text-embedding-3-small \ --api-key $OPENAI_API_KEY \ system.log # Custom endpoint (OpenAI-compatible) cordon --backend remote \ --model-name text-embedding-3-small \ --endpoint http://localhost:8000/v1 \ system.log
Supported providers (via LiteLLM): OpenAI, Azure OpenAI, Gemini, Cohere, Bedrock, Voyage AI, Mistral, Hugging Face, and any OpenAI-compatible endpoint.
Container Usage
Build
# Build locally
make container-buildRun
# Pull published image from GitHub Container Registry podman pull ghcr.io/calebevans/cordon:latest # or :dev for development builds # Run with published image podman run --rm -v /path/to/logs:/logs:Z ghcr.io/calebevans/cordon:latest /logs/system.log # Run with locally built image make container-run DIR=/path/to/logs ARGS="/logs/system.log" # With GPU (requires Podman with libkrun) podman run --device /dev/dri -v /path/to/logs:/logs:Z ghcr.io/calebevans/cordon:latest \ --backend llama-cpp --n-gpu-layers 10 /logs/system.log
See Container Guide for full details.
Primary Use Case: LLM Context Reduction
Cordon attempts to solve the problem of log files being too large for LLM context windows by reducing them to semantically significant sections.
Real-world reduction rates from benchmarks:
- 1M-line HDFS logs → 20K lines (98% reduction with p=0.02 threshold)
- 5M-line HDFS logs → 100K lines (98% reduction with p=0.02 threshold)
Example workflow:
# Extract anomalies analyzer = SemanticLogAnalyzer() anomalies = analyzer.analyze_file(Path("production.log")) # Send curated context to LLM (now fits in context window)
The output is intentionally lossy—it discards repetitive patterns to focus on semantically unusual events.
How It Works
Pipeline
- Ingestion: Read log file line-by-line
- Segmentation: Create non-overlapping windows of N lines
- Vectorization: Embed windows using transformer models
- Scoring: Calculate k-NN density scores
- Thresholding: Select top X% based on scores
- Merging: Combine adjacent significant windows
- Formatting: Generate XML-tagged output
Scoring
- Higher score = Semantically unique = Anomalous
- Lower score = Repetitive = Normal background noise
The score for each window is the average cosine distance to its k nearest neighbors in the embedding space.
GPU Acceleration: Both embedding and scoring phases automatically leverage GPU acceleration (CUDA/MPS) when available, providing significant speedups for large log files.
Important: Repetitive patterns are filtered even if critical. The same FATAL error repeated 100 times scores as "normal" because it's semantically similar to itself.
See Cordon's architecture for full details.
Configuration
Analysis Parameters
| Parameter | Default | CLI Flag | Description |
|---|---|---|---|
window_size |
4 | --window-size |
Lines per window (non-overlapping) |
k_neighbors |
5 | --k-neighbors |
Number of neighbors for density calculation |
anomaly_percentile |
0.1 | --anomaly-percentile |
Top N% to keep (0.1 = 10%) |
anomaly_range_min |
None | --anomaly-range MIN MAX |
Lower bound for range mode (exclude top X%) |
anomaly_range_max |
None | --anomaly-range MIN MAX |
Upper bound for range mode (include up to Y%) |
batch_size |
32 | --batch-size |
Batch size for embedding generation |
scoring_batch_size |
Auto | --scoring-batch-size |
Batch size for k-NN scoring (auto-detects based on GPU memory) |
Note on Filtering Modes:
- Percentile Mode (default):
--anomaly-percentile 0.1keeps the top 10% most anomalous windows - Range Mode:
--anomaly-range 0.05 0.15excludes the top 5% (most extreme) and keeps the next 10% (moderately anomalous). Useful for filtering out known issues or startup noise while focusing on unusual-but-not-extreme patterns.
Backend Options
| Parameter | Default | CLI Flag | Description |
|---|---|---|---|
backend |
sentence-transformers |
--backend |
Embedding backend (sentence-transformers/llama-cpp/remote) |
model_name |
all-MiniLM-L6-v2 |
--model-name |
Model name (HuggingFace for sentence-transformers, provider/model for remote) |
device |
Auto | --device |
Device for embedding and scoring (cuda/mps/cpu) |
model_path |
None | --model-path |
GGUF model path (llama-cpp) |
n_gpu_layers |
0 | --n-gpu-layers |
GPU layers (llama-cpp) |
api_key |
None | --api-key |
API key for remote embeddings (falls back to env vars) |
endpoint |
None | --endpoint |
Custom API endpoint URL (remote) |
request_timeout |
60.0 | N/A | Request timeout in seconds (remote) |
Output Options
| Parameter | Default | CLI Flag | Description |
|---|---|---|---|
detailed |
False | --detailed |
Show detailed statistics (timing, score distribution) |
output |
None | --output, -o |
Save anomalous blocks to file (default: stdout) |
Run cordon --help for full CLI documentation.
⚠️ Important: Token Limits and Window Sizing
Transformer models have token limits that affect how much of each window is analyzed. Windows exceeding the limit are automatically truncated to the first N tokens.
Cordon will warn you if significant truncation is detected and suggest better settings for your logs.
Default model (all-MiniLM-L6-v2) has a 256-token limit:
- Compact logs (20-30 tokens/line): Can increase to
window_size=8for more context - Standard logs (40-50 tokens/line): Default works well
- Verbose logs (50-70 tokens/line): Default works, or use larger model for bigger windows
- Very verbose logs (80+ tokens/line): Reduce to
window_size=3or use larger-context model
For verbose system logs, use larger-context models:
# BAAI/bge-base-en-v1.5 supports 512 tokens (~8-10 verbose lines) cordon --model-name "BAAI/bge-base-en-v1.5" --window-size 8 your.log
See Configuration Guidelines for detailed recommendations.
Use Cases
What Cordon Is Good For
- LLM Pre-processing: Reduce large logs to small anomalous sections prior to analysis
- Initial Triage: First-pass screening of unfamiliar logs to find "what's unusual here?"
- Anomaly Detection: Surface semantically unique events (rare errors, state transitions, unusual clusters)
- Exploratory Analysis: Discover unexpected patterns without knowing what to search for
- Iterative Investigation: Use range mode to exclude known issues and focus on the next tier of anomalies
What Cordon Is NOT Good For
- Complete error analysis (repetitive errors filtered)
- Specific error hunting (use grep/structured logging)
- Compliance logging (this is lossy by design)
Choosing Between Percentile and Range Mode
Use Percentile Mode (--anomaly-percentile) when:
- First time analyzing a log file
- You want the most anomalous content
- Simple, straightforward filtering
Use Range Mode (--anomaly-range) when:
- You want to exclude known extreme anomalies (startup errors, expected failures)
- Investigating the "next tier" of unusual patterns
- The top percentile is dominated by things like start-up logs
- You need to focus on moderately anomalous patterns
Example workflow:
# Step 1: Find the most extreme anomalies cordon --anomaly-percentile 0.05 app.log > top5.xml # Step 2: After reviewing, exclude those and see the next tier cordon --anomaly-range 0.05 0.15 app.log > next10.xml # Step 3: Focus on moderate anomalies, excluding startup noise cordon --anomaly-range 0.02 0.10 app.log > filtered.xml
Performance
GPU Acceleration
Cordon automatically leverages GPU acceleration for both embedding and scoring phases when available:
- Embedding: Uses PyTorch/sentence-transformers with CUDA or MPS
- Scoring: Uses PyTorch for GPU-accelerated k-NN computation
- Speedup: 5-15x faster scoring on GPU compared to CPU for large datasets
For large log files (millions of lines), GPU acceleration can reduce total processing time from hours to minutes.
Memory Management
Cordon uses PyTorch for all k-NN scoring operations:
| Strategy | When | RAM Usage | Speed |
|---|---|---|---|
| PyTorch GPU | GPU available (CUDA/MPS) | Moderate | Fastest |
| PyTorch CPU | No GPU / CPU forced | Moderate | Fast |
What's a "window"? A window is a non-overlapping chunk of N consecutive log lines (default: 4 lines). A 10,000-line log with window_size=4 creates 2,500 windows.
Fuente: GitHub